VASCULAR BIOLOGY The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis

نویسندگان

  • Gemma Bridge
  • Rui Monteiro
  • Stephen Henderson
  • Victoria Emuss
  • Dimitris Lagos
  • Dimitra Georgopoulou
  • Roger Patient
  • Chris Boshoff
چکیده

Delta-like 4 (DLL4), a membrane-bound ligand belonging to the Notch signaling family, plays a fundamental role in vascular development and angiogenesis. We identified a conserved microRNA family, miR-30, which targets DLL4. Overexpression of miR-30b in endothelial cells led to increased vessel number and length in an in vitro model of sprouting angiogenesis. Microinjection of miR-30 mimics into zebrafish embryos resulted in suppression of dll4 and subsequent excessive sprouting of intersegmental vessels and reduction in dorsal aorta diameter. Use of a target protector against the miR-30 site within the dll4 3 UTR up-regulated dll4 and synergized with Vegfa signaling knockdown to inhibit angiogenesis. Furthermore, restoration of miR-30b or miR30c expression during Kaposi sarcoma herpesvirus (KSHV) infection attenuated viral induction of DLL4. Together these results demonstrate that the highly conserved molecular targeting of DLL4 by the miR-30 family regulates angiogenesis. (Blood. 2012;120(25):5063-5072)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis.

Delta-like 4 (DLL4), a membrane-bound ligand belonging to the Notch signaling family, plays a fundamental role in vascular development and angiogenesis. We identified a conserved microRNA family, miR-30, which targets DLL4. Overexpression of miR-30b in endothelial cells led to increased vessel number and length in an in vitro model of sprouting angiogenesis. Microinjection of miR-30 mimics into...

متن کامل

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function

Delta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)–A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are current...

متن کامل

Endothelial Jagged1 antagonizes Dll4 regulation of endothelial branching and promotes vascular maturation downstream of Dll4/Notch1.

OBJECTIVE Notch signaling controls cardiovascular development and has been associated with several pathological conditions. Among its ligands, Jagged1 and Dll4 were shown to have opposing effects in developmental angiogenesis, but the underlying mechanism and the role of Jagged1/Notch signaling in adult angiogenesis remain incompletely understood. The current study addresses the importance of e...

متن کامل

Novel insights into the differential functions of Notch ligands in vascular formation

The Notch signaling pathway is a critical component of vascular formation and morphogenesis in both development and disease. Compelling evidence indicates that Notch signaling is required for the induction of arterial-cell fate during development and for the selection of endothelial tip and stalk cells during sprouting angiogenesis. In mammals, two of the four Notch receptors (Notch1 and Notch4...

متن کامل

Up-regulation of the Notch ligand Delta-like 4 inhibits VEGF-induced endothelial cell function.

Delta-like 4 (Dll4), a membrane-bound ligand for Notch1 and Notch4, is selectively expressed in the developing endothelium and in some tumor endothelium, and it is induced by vascular endothelial growth factor (VEGF)-A and hypoxia. Gene targeting studies have shown that Dll4 is required for normal embryonic vascular remodeling, but the mechanisms underlying Dll4 regulatory functions are current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012